

MATHEMATICS EXTENSION 2

2023 Year 12 Course Assessment Task 4 (Trial Examination) Wednesday, 16 August 2023

General instructions

- Working time 3 hours.
 (plus 10 minutes reading time)
- Write using blue or black pen. Where diagrams are to be sketched, these may be done in pencil.
- NESA approved calculators may be used.
- Attempt all questions.
- At the conclusion of the examination, bundle the booklets used in the correct order within this paper and hand to examination supervisors.

SECTION I - 10 marks

- Mark your answers on the answer grid provided.
- Attempt Questions 1–10
- Allow about 15 minutes for this section

SECTION II - 90 marks

- Commence each new question on a new booklet. Write on both sides of the paper.
- Attempt Questions 11–16
- Allow about 2 hours and 45 minutes for this section
- All necessary working should be shown in every question. Marks may be deducted for illegible or incomplete working.

NESA STUDENT #:	# BOOKLETS USED:
Class: (please ✓)	
O 12MXX.1 – Mr Ho O 12MXX.2 – Mr Sekaran O 12MXX.3 – Ms Ham	

Marker's use only

QUESTION	1-10	11	12	13	14	15	16	Total	%
MARKS	10	13	13	12	17	18	17	100	

Section I

10 marks

Attempt Questions 1 to 10

Allow approximately 15 minutes for this section

Mark your answers on the answer grid provided.

Questions Marks

1. Which of the following expression best represents 4 + 3i? 1

1

- (A) $5e^{36.679i}$
- (B) $25e^{0.644i}$
- (C) $5e^{0.927 i}$
- (D) $5e^{0.644 i}$
- 2. The complex numbers z, iz and z + iz, where z is a non-zero complex number, are plotted in the Argand plane, forming the vertices of a triangle.

Which of the following is the area of the triangle?

(A) |z|

(B) $|z| + |z|^2$

- (D) $\frac{\sqrt{3}}{2}|z|^2$
- **3.** Which of the following statement is true?

1

- (A) $\forall x \in \mathbb{R}, \exists y \in \mathbb{R} \text{ such that } xy = 10$
- (C) $\exists x \in \mathbb{R}$, such that $\forall y \in \mathbb{R}$, xy = 10
- (B) $\exists x \in \mathbb{R}$, such that $\forall y \in \mathbb{R}, x + y = 10$
- (D) $\forall x \in \mathbb{R}, \exists y \in \mathbb{R} \text{ such that } x + y = 10$
- Which of the following is the Cartesian equation for a sphere with centre $\begin{pmatrix} 1 \\ 2 \end{pmatrix}$ and radius 3? 4.

 - (A) $x^2 + x + y^2 + 2y + z^2 2z = 0$ (C) $x^2 + 2x + y^2 + 4y + z^2 4z = 0$

 - (B) $x^2 x + y^2 2y + z^2 + 2z = 0$ (D) $x^2 2x + y^2 4y + z^2 + 4z = 0$

1

On the argand diagram below, the twelve points $P_1, P_2, P_3, \dots, P_{12}$ are evenly spaced around 5. the circle of radius 3.

Which set of points represent the solutions to $z^3 = -27 i$?

- (A) P_2, P_6, P_{11}
- (B) P_4, P_8, P_{12}
- (C) P_3, P_7, P_{11} (D) P_1, P_5, P_9

What is the value of $\int_{-k}^{k} \{f(x) - f(-x)\} dx ?$

1

 $(A) \int_{0}^{\kappa} f(x) dx$

(B) $4\int_{-\infty}^{k} f(x) dx$

- (D) $2\int_{0}^{k} f(x) dx$
- Which expression is equal to $\int x\sqrt{1-x} \, dx$? 7.

1

- (A) $-\frac{1}{3}x^2(1-x)^{\frac{3}{2}}+c$
- (B) $\frac{1}{3}x^2(1-x)^{\frac{3}{2}}+c$
- (C) $-\frac{2}{5}x(1-x)^{\frac{5}{2}} + \frac{2}{3}x(1-x)^{\frac{3}{2}} + c$
- (D) $\frac{2}{5}(1-x)^{\frac{5}{2}} \frac{2}{3}(1-x)^{\frac{3}{2}} + c$

8. Suppose z = p + iq is a solution of the polynomial equation

$$c_4 z^4 + i c_3 z^3 + c_2 z^2 + i c_1 z + c_0 = 0$$

where p, q, c_4 , c_3 , c_2 , c_1 and c_0 are real.

Which of the following must also be a solution?

- (A) q + ip

- (B) -p + iq (C) -p iq (D) -p iq

1

9. The line ℓ_1 has vector equation $r_1 = i + \lambda(j - k)$ and the line ℓ_2 has vector equation 1 $r_2 = \left(3i + 2j - k\right) + \mu\left(2i + 2k\right)$, where $\lambda, \mu \in \mathbb{R}$.

Which of the following statements is correct?

(A) ℓ_1 and ℓ_2 are parallel.

- (C) ℓ_1 and ℓ_2 are perpendicular.
- (B) ℓ_1 and ℓ_2 intersect at a point.
- (D) ℓ_1 and ℓ_2 are skew.
- A ball is thrown vertically up with an initial velocity of $7\sqrt{6}$ ms⁻¹, and it is subject to gravity and air 1 10. resistance. The acceleration of the ball is given by $\ddot{x} = -(9.8 + 0.1 \text{ } v^2)\text{ms}^{-2}$, where x metres is its vertical displacement from the point of projection, and $v \text{ ms}^{-1}$ is its velocity at time t seconds.

Which of the following is the time, in seconds, taken for the ball to reach its maximum height?

(C) $\log_e 4$

(D) $\frac{\pi}{3}$

Section II

90 marks

Attempt Questions 11 to 16

Allow approximately 2 hours and 45 minutes for this section.

Write your answers in the writing booklets supplied. Additional writing booklets are available. Your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (13 marks) Commence a New booklet

Marks

2

(a) If
$$a + bi = \frac{2 + 4i}{1 - i}(b + i)$$
, where a and b are real constants, find the values of a and b.

(b) For real numbers
$$a, b > 0$$
 prove that $\frac{a}{b} + \frac{b}{a} \ge 2$.

(c) The complex number z is given by z = -p + pi, where p is a positive real number.

It is given that $w = \frac{\sqrt{2} \ \overline{z}}{z^4}$.

i. Express w in the form
$$re^{i\theta}$$
, in terms of p, where $r > 0$ and $-\pi < \theta \le \pi$.

ii. Find the smallest positive whole number
$$n$$
 such that $Re(w^n) = 0$.

(d) The unit vectors along \overrightarrow{BC} , \overrightarrow{BA} , and \overrightarrow{BQ} are i, j, and k respectively with each of its magnitude 1 cm. M is the midpoint of PS of the rectangular prism.

i. Find
$$\overrightarrow{DM}$$
.

ii. Using vector method, find the size of $\angle QDM$, giving your answer to the nearest degree. 2

(e) Evaluate
$$\int_{0}^{\frac{\pi}{2}} \sqrt{\sin x} \cos^3 x \ dx$$

Examination continues overleaf...

Question 12 (13 marks) Commence a New booklet

Marks

(a) Consider the statement:

$$\forall x \in \mathbb{R}, \ (x \ge 3) \Rightarrow (x^2 > 5)$$

i. Write the contrapositive.

1

ii. Write the negation.

1

(b) A motorist is travelling at a constant speed of 20 ms⁻¹. When the motorist reaches a horizontal section of the road, the brakes are applied. The combined retarding force from the brakes and the friction of the road, is proportional to the speed v of the car. After travelling 80 metres along this section of the road, the speed of the car has fallen to 10 ms^{-1} .

Let x metres be the distance of the car from the start of the horizontal section.

i. Show that $\ddot{x} = -kv$, where k is a constant.

1

ii. Find the value of k.

2

iii. How long did it take for the speed to drop from 20 ms⁻¹ to 10 ms⁻¹? Give the answer as an exact value.

2

- (c) Using partial fractions, show that $\int_{0}^{1} \frac{5(1-x)}{(1+x)(3-2x)} dx = \ln \frac{4}{\sqrt{3}}.$
- (d) i. Sketch the graph of the set of points z defined by |z (3 4i)| = 3, where $z \in \mathbb{C}$.

1

ii. *P* is a point on the graph drawn in part (i) such that the modulus of the complex number represented by *P* is the smallest.

1

Find the complex number represented by P in a + ib form.

Question 13 (12 marks) Commence a New booklet

Marks

(a) For integers a and b, prove that if a + b is odd then $a^2 + b^2$ is odd.

2

- (b) Let $f(x) = x \ln(1 + x)$ and $g(x) = x + \ln(1 x)$, where $0 \le x < 1$.
 - i. By differentiating f(x), show that $\ln(1+x) < x$ for 0 < x < 1.

2

ii. By differentiating g(x), show that $-\ln(1-x) > x$ for 0 < x < 1.

2

iii. Deduce from (i) and (ii) that

2

$$\ln(n+1) - \ln n < \frac{1}{n} < \ln n - \ln(n-1)$$

for all positive integer n > 1.

iv. Hence or otherwise show that
$$6.21 < \sum_{k=2}^{1000} \frac{1}{k} < 6.91$$
.

2

(c) One of the roots of the equation $3z^3 + 13z^2 + 20z + 14 = 0$ is -1 + i.

2

Find the other roots of the equation.

Examination continues overleaf...

Question 14 (17 marks) **Commence a New booklet**

Marks

(a) i. The line ℓ_1 has Cartesian equation $x = -y = \frac{z}{2}$.

1

1

Show that its vector equation is $r = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}$, where $\lambda \in \mathbb{R}$.

ii. Write the vector equation of the line ℓ_2 in the form $r = a + \mu b$ that passes through the point A(1, 1, 0) and is parallel to the vector $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$, where $\mu \in \mathbb{R}$.

- iii. Find the acute angle θ between the lines ℓ_1 and ℓ_2
- iv. Find the coordinates of the point of intersection N of the lines ℓ_1 and ℓ_2
- v. Find the shortest distance from the point A to the line ℓ_1 .
- vi. Find the equation of a line ℓ_3 which bisects the acute angle θ and passes through N such that the three lines ℓ_1, ℓ_2 and ℓ_3 lie on the same plane.

 [You may consider the unit vectors of the directional vectors of lines ℓ_1 and ℓ_2].
- (b) Let $I_n = \int_0^{\frac{\pi}{2}} \sin^n x \, dx$, for $n \in \mathbb{Z}^+$.
 - i. Using integration by parts, show that $nI_n = (n-1)I_{n-2}$, where $n \ge 2$.

A sequence $\{x_n\}$ is defined by $x_n = nI_nI_{n-1}$ for $n \in \mathbb{Z}^+$.

- ii. Using part (i) or otherwise, show that $x_{n+1} = x_n$.
- iii. Hence show that $x_1 = x_2 = x_3 = \dots = x_n = x_{n+1} = \frac{\pi}{2}$.
- iv. Explain why $I_n \le I_{n-1}$.
- v. Using parts (ii), (iii) and (iv) or otherwise, show $\sqrt{\frac{\pi}{2(n+1)}} \le l_n \le \sqrt{\frac{\pi}{2n}}$ for $n \in \mathbb{Z}^+$.

Question 15 (18 marks) Commence a New booklet

Marks

(a) One end of a light spring of natural length l m is tied to a fixed point P at the ceiling and the other end to a particle of mass m kg as shown in the diagram below.

Assume there is no air resistance. g is the constant acceleration due to gravity.

The particle is initially pulled down to a distance of 6 m from the ceiling and from there it is projected downwards at a speed of 3.5 ms⁻¹. The particle then oscillates vertically in simple harmonic motion.

Let x be the displacement of the particle from the ceiling.

For the particle, the force T exerted by the spring is proportional to x - l, that is T = k(x - l) newtons where k is the stiffness of the spring which is a positive constant.

i. Show that
$$\ddot{x} = -\frac{k}{m} \left[x - \left(\frac{mg}{k} + l \right) \right]$$
.

ii Show that
$$x = a \cos\left(\sqrt{\frac{k}{m}} t + \alpha\right) + \frac{mg}{k} + l$$
 satisfies the differential equation in part (i), where a and α are constants.

It is given that m = 4 kg, l = 5 m, $k = 49 \text{ Nm}^{-1}$ and $g = 9.8 \text{ ms}^{-2}$.

(b) Marks

CD is an altitude of the $\triangle ABC$ and H is a mid point of CD. AH and BH are produced to meet BC and AC at E and F respectively.

Let p, λp ($\lambda > 1$) and q be \overrightarrow{AD} , \overrightarrow{AB} and \overrightarrow{DH} respectively. Let $\frac{BE}{EC} = r$.

i. Find
$$\overrightarrow{AC}$$
 in terms of p and q .

ii. Show that
$$\overrightarrow{AE} = \frac{(r+\lambda)p + 2rq}{1+r}$$
.

iii. Using the fact that A, H and E are collinear, show that
$$r = \lambda$$
.

It is given that |p| = 1 and |q| = 2 and H is the orthocentre of the triangle $\triangle ABC$.

[The orthocenter is the point where all the three altitudes of the triangle intersect each other].

iv. Using AH is perpendicular to BC or otherwise, find the value of λ .

v. Using the fact that B, H and F are collinear or otherwise, find the ratio AF: FC 3

2

Question 16 (17 marks) Commence a New booklet

Marks

(a) A food parcel is dropped vertically from a rescue helicopter which is 2000 metres above a group of stranded refugees in a war-torn country. After 10 seconds a parachute opens automatically. Air resistance is neglected for the first 10 seconds but then the effect of the open parachute applies a resistance of 2Mv newtons where M kg is the mass of the parcel plus parachute and v ms⁻¹ is the velocity after t seconds (t ≥ 10 seconds).

Take the position of the helicopter to be the origin, the downwards direction as positive and the value of g, the acceleration due to gravity, as 10 ms⁻².

- i. Show that the velocity of the parcel at the end of 10 seconds is 100 ms⁻¹ and the distance fallen at the end of 10 seconds is 500 metres.
- ii. Show that the velocity of the parcel after the parachute opens is given by

$$v = 5 + 95e^{-2(t-10)}$$

for $t \geq 10$.

- iii. Find x, the distance fallen as a function of t.
- (b) Two sequences u_1, u_2, u_3, \dots and v_1, v_2, v_3, \dots are given by

$$u_1 = 1$$
, $v_1 = 1$ and

$$u_{n+1} = u_n + 3v_n$$
, $v_{n+1} = 2u_n + 7v_n$

for positive integers n.

i. Using Mathematical induction, prove that $2u_n^2 - 3v_n^2 + 6u_nv_n = 5$ for all positive integer n. 2

The sequence r_1 r_2 , r_3 , \cdots is such that $r_n = \frac{u_n}{v_n}$ for positive integers n.

It is given that as $n \to \infty$, $v_n \to \infty$ and $r_n \to L$ for some real constant L.

ii. Using the result in (i) or otherwise, show that $L = \frac{1}{2}(\sqrt{15} - 3)$.

Examination continues overleaf...

(c) Let
$$\omega = \cos \frac{2\pi}{3} + i \sin \frac{2\pi}{3}$$
 and $S_n = \sum_{r=1}^n \omega^r$, where *n* is a positive integer. **Marks**

It is given that $1 + \omega + \omega^2 = 0$. It is also given that $S_n = 0$ if n is multiple of 3. (DO NOT prove this).

- i. Find S_n if n is a not multiple of 3.
- ii. Prove that there exists **no** integer *m* such that $(S_{2022} + S_{2023} + S_{2024})^m = 2$.
- iii. Find all positive integers k such that $(S_n)^k + (S_{n+1})^k + (S_{n+2})^k = 2$.

End of paper

$$g(x) = f(x) - f(-x)$$

$$g(-x) = f(-x) - f(x)$$

$$= -g(x)$$

$$C$$

$$(1-x) - (1-x) dx$$

$$= -\int (1-x) - (1-x) dx$$

$$= -\int (1-x) - (1-x) dx$$

$$= -\frac{2}{5}(1-x)^{5/2} - \frac{2}{3}(1-x) + C$$

$$= -\frac{2}{5}(1-x)^{5/2} - \frac{2}{3}(1-x) + C$$

$$C_{11} + C_{12} + C_{12} + C_{12} + C_{12} + C_{12} + C$$

$$C_{11} + C_{12} + C_{12} + C_{12} + C$$

$$C_{11} + C_{12} + C_{12} + C$$

$$C_{11} + C_{12} + C_{12} + C$$

$$C_{11} + C$$

i) $\forall x \in \mathbb{R} \ (x \leq 5)$ ii) FXER Such that (N73) 1 (2

$$\frac{dv}{dt} = -\frac{1}{6} V$$

$$\frac{dv}{dt} = -\frac{1}{6} V$$

$$\frac{1}{10} \frac{dv}{dt} = -\frac{1}{6} V$$

$$\frac{1}{10} \frac{1}{10} \frac{dv}{dt} = -\frac{1}{6} \frac{dt}{dt}$$

$$\frac{1}{10} \frac{1}{10} \frac{dv}{dt} = -\frac{1}{6} \frac{dt}{dt}$$

$$\frac{1}{10} \frac{1}{10} \frac{1}{10} \frac{1}{10} = -\frac{1}{6} \frac{dt}{dt}$$

$$\frac{1}{10} \frac{1}{10} \frac{1}{10} \frac{1}{10} = -\frac{1}{6} \frac{dt}{dt}$$

$$\frac{1}{10} \frac{1}{10} \frac{1}{10} \frac{1}{10} \frac{1}{10} = -\frac{1}{6} \frac{dt}{dt}$$

$$\frac{1}{10} \frac{1}{10} \frac{1}{10$$

a) If both a and b odd or both even then a+b is even ... one of then is odd and other is even will g take a is odd and b is even then Jm, n & 21 such this a = 2m + 1 and b = 2n $a^{2}+b^{2}=(2m+1)^{2}+4n^{2}$ $=2(2m^2+2\Lambda^2+2m)+1$ = 2k+1 where k=2m+2n+2me2 + b 12 odd f(x): x- (n(1+x) $f'(x) = 1 - \frac{1}{1+x} = \frac{x}{x+1} > 0 for x \in (0,1)$ and f(0) = f(0) = 0 f(0) < f(x) \ \ K \ E(0,1) \ 0 < x- (n(HK) 4x6(0,1) In CI+x) < x

Mothod 2
$$NA = \begin{pmatrix} 0 \\ 2 \end{pmatrix}$$
 $NB = Proj_{M}NA$

$$= \frac{NA \cdot U}{|U|^{2}}$$

$$= \frac{2+b}{8} \begin{pmatrix} -\frac{1}{2} \end{pmatrix} = \begin{pmatrix} -\frac{1}{2} \\ -\frac{1}{2} \end{pmatrix}$$

$$= \frac{2+b}{8} \begin{pmatrix} -\frac{1}{2} \\ -\frac{1}{2} \end{pmatrix} = \begin{pmatrix} -\frac{1}{2} \\ -\frac{1}{2} \end{pmatrix}$$

$$= \begin{pmatrix} -\frac{1}{2} \\ -\frac{1}{2} \end{pmatrix} + \begin{pmatrix} -\frac{1}{2} \\ -\frac{1}{2} \end{pmatrix} = \begin{pmatrix} -\frac{1}{2} \\ -\frac{1}{2} \end{pmatrix}$$

$$= \begin{pmatrix} -\frac{1}{2} \\ -\frac{1}{2} \end{pmatrix} + \begin{pmatrix} -\frac{1}{2} \\ -\frac{1}{2} \end{pmatrix} + \begin{pmatrix} -\frac{1}{2} \\ -\frac{1}{2} \end{pmatrix} + \begin{pmatrix} -\frac{1}{2} \\ -\frac{1}{2} \end{pmatrix} = \begin{pmatrix} -\frac{1}{2} \\ -\frac{1}{2} \end{pmatrix}$$

$$= \begin{pmatrix} -\frac{1}{2} \\ -\frac{1}{2} \end{pmatrix} + \begin{pmatrix} -\frac{1}{2} \\ -\frac{1}{2} \end{pmatrix} + \begin{pmatrix} -\frac{1}{2} \\ -\frac{1}{2} \end{pmatrix} + \begin{pmatrix} -\frac{1}{2} \\ -\frac{1}{2} \end{pmatrix} = \begin{pmatrix} -\frac{1}{2} \\ -\frac{1}{2} \end{pmatrix} + \begin{pmatrix} -\frac{1}{2} \\ -\frac{1}{2} \end{pmatrix} = \begin{pmatrix} -\frac{1}{2} \\ -\frac{1}{2} \end{pmatrix} + \begin{pmatrix} -\frac{1}{2} \\ -\frac{1}{2} \end{pmatrix} = \begin{pmatrix} -\frac{1$$

but by ii x.	$1 = \chi_{N-1} = \chi_{N-2} = \cdots = \chi_2 = \chi_1$
U	$= \chi_{N-1} = \chi_{N-2} = \cdots = \chi_2 = \chi_1$ $= \overline{\chi}_2$
/ U Z S:	NY SI YKELO, 量]
i. Sin	nel HKE [の宝]
	n ≤ In-1
π - 2 u :	$= N I_{n} I_{n-1} \qquad \qquad$
2	正メルエル「かり」に
	2 2 2 5
	1-N 2.
	$I_{N} \leq \sqrt{\frac{1}{2}N} \qquad -(4)$
	x - (n+1) In+1 In
5 7	×n+1 = (n+1) In+1 In ≥(n+1) In In
	In > = = = = = = = = = = = = = = = = = =
	エハン (11 一(**)
144)	V.2.(A+1.)
From (+)	T < In < Jan
V-3	·(^4-1')

BIJ

(1) T=k(7-l)

mg

1)
$$F = ma + m\ddot{x} = mg - k(x-l)$$

 $\dot{x} = g - \frac{k}{M} (\chi - l)$

 $=-\frac{k}{m}\left(x-l-\frac{mg}{k}\right)$

 $= -\frac{k}{m} \left(\lambda - \left(\frac{mg}{k} + l \right) \right)$

(i)
$$\chi = a \log \left(\left(\frac{k}{m} t + \lambda \right) + \frac{mg}{k} + \lambda \right)$$

$$\varkappa = -a \left(\frac{R}{m} \sin \left(\frac{R}{m} t + \alpha \right) \right)$$

$$=-\frac{k}{m}\left(2-\left(\frac{mg}{k}+1\right)\right)$$

...
$$\mathcal{H} = a \cos\left(\frac{1}{m}t + \lambda\right) + \frac{mg}{k} + 1$$
 eatisties the

49 (x-5.8) x=6m, x=3-5m+12 = a / (a-(x-5-8)2

$$3.5^{2} - 49 \left(a^{2} - (6-5.8)^{2}\right)$$

$$1 = a^{2} - (0.2)^{2} \Rightarrow a^{2} = 1-04$$

$$a = \sqrt{1.04}$$

with als

$$x = -\frac{49}{4} \left(x - 5.8\right)$$

$$x = -\frac{36}{4} - \frac{36}{4} - \frac{36}$$

ii)
$$\overrightarrow{AE} = \overrightarrow{AC} + \overrightarrow{CE}$$

$$AE = AC + CE$$

$$= \overrightarrow{AC} + \overrightarrow{L} + CB$$

$$= \overrightarrow{AC} + \overrightarrow{L} + \overrightarrow{AB}$$

$$= (1 - \cancel{L} + \overrightarrow{L}) \overrightarrow{AC} + \overrightarrow{L} + \overrightarrow{AB}$$

$$= \frac{r}{r+1} \left(\frac{p+2}{2} \right) + \frac{1}{1+r} \left(\frac{\lambda p}{\lambda} \right)$$

$$= (\Upsilon + \lambda) + 2\Upsilon^{\frac{2}{2}}$$

Since A, Haul E Collineau

$$AF = 2r$$

$$A = r$$

$$AH \cdot BC = 0$$

$$AH \cdot BC = 0$$

$$AH \cdot (BA + AC) = 0$$

$$(P+2) \cdot (-aP + B+22) = 0$$

$$(P+2) \cdot ((1-a)P + 2P) = 0$$

$$(1-a)PP + (2-a)P + 2P = 0$$

$$(1-a)PP + (3-a)O + 2(4) = 0$$

$$A = 9$$

$$AF = MAC \text{ and } BH = TBF$$

$$AF = mP + 2P$$

$$AF = AB + F$$

$$= AB +$$

íì)

S(n): 24,2-3~n2+64,1~1=5
prove for SUI)
$L + S = 2u_1^2 - 3v_1 + 6u_1v_1$
= 2 - 3 + 6
S(1) 15 true
Assume S(k) is true
i.a. 242-352+64kVk=5
prove fos S(k+1)
1-H.S= 24k+1-34+1
$= 2 (u_k + 3 u_k)^3 (2 u_k + 7 v_k)$
+6 (4k+34)(24k+74k)
$=2U_{k}^{2}+12U_{k}V_{k}+16V_{k}^{2}$
- 12 Uh2 - 84 UhVb - 147 Vb
+12 Up2 + 78 Up Vk + 126 Vk2
= 24k + 6 4k 4 - 3 1k
=5 by assumption.
= I by assumption. = I by assumption. = R. H. S S (k+1) is true = R. H. S far all n E/Kl . Dy MI, S(n) is true
· ly MI, S(A) is then a

i)
$$\omega = Cis \frac{2\pi}{3}$$
; $g_n = \frac{2\pi}{5} \omega$
 $g_n = \omega + \omega^2 + \cdots + \omega^2 = \frac{2\pi}{3} \omega$
 $\omega = \omega + \omega^2 + \cdots + \omega^2 = \frac{2\pi}{3} \omega$
 $\omega = \omega + \omega^2 + \cdots + \omega^2 = \frac{2\pi}{3} \omega$
 $\omega = \omega + \omega^2 + \cdots + \omega^2 = \omega^2 = \omega^2$

If $n = 3m + 1 = \omega + \omega^2$
 $\omega = \omega + \omega^2 = \omega^2$
 $\omega = \omega + \omega^2$
 $\omega = \omega^2$

Assume there exist an integer ω
 $\omega = \omega^2$
 $\omega =$

 $\left(-1-\frac{1}{2}+\frac{13}{2}i\right)^{m}=2$ $\left(-\frac{3}{2}+\frac{13}{2}i\right)=2$ 1-3+ [3] -] =] =] = 53 AME 24 Such (Soot Souts 2025 2024 $(S_n) + (S_{n+1}) + (S_{n+2}) = 2$ {S, Sn+1, Sn+2} = {0,-1, w} is even wk=1 Cis 2kt - 1 = Cis 0 $\frac{2k\pi}{3} = 2m\pi f \text{ or } m = 0, \pm 1$ k is even and multiple of 3 $k = b \cdot n \quad \text{for } n = 0, \pm 1, \pm 2, \dots$ 27